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“For energy efficient buildings, building envelope design is the key factor ” - ECBC
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Building energy efficiency related studies



Performance Evaluation based on Thermal Modelling of PCM Embedded Walls/ Roof

Why PCMs?

With the rapid growth in urban population there is a constraint to building space and material usage. We need to increase

the thermal mass of buildings without going back to the heavy vernacular constructions (mud houses).
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Performance Evaluation based on Thermal Modelling of PCM Embedded Walls/ Roof

» Aimed to target temperate climate zones in India (where temperatures in summer > 35°C)
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« Study gives a systematic procedure for analyzing a PCM and assessing its suitability for application in a particular climatic

condition.

* New product development (PCM incorporated brick/block conforming to Indian Standards) will offer a feasible solution to
reduce cooling energy demand of buildings and can be implemented in housing schemes of the government such as
Pradhan Mantri Awas Yojna.
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PCMs
their

Segregating
based on
melting temperatures
and assessing their
suitability for
different Indian
climates =>
beneficial for
implementing

agencies and end
users to identify and
select  the best

possible option.
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Performance Evaluation based on Thermal Modelling of
PCM Embedded Walls/Roof
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Performance Evaluation based on Thermal Modelling of PCM Embedded Walls/ Roof

PCM mapping necessary for their effective utilization.

For Delhi, phase change temperature range of 34 °C to 38 °C is optimum for summer (from thermal modelling results)*
=> Eicosane and OM35 rendered suitable for application (both discharged during off sun-shine hours, ensuring effective
utilization of these PCMs)**

Reduction (up to 10°C) in temperature fluctuation with PCM incorporated bricks***
Inside temperature reduction between 4.5 °C - 7 °C, during peak hours of the day, compared to conventional bricks***

The heat gain reduced by 8% and 12% with incorporation of Eicosane and OM35 for experiments carried out in third
week of May 2018, compared to conventional bricks***

A temperature reduction up to 9.5°C for dual PCM layer within the brick and a temperature reduction of 6°C is
achieved for single layered PCM brick****

Heat gain reduction up to 70% is observed for dual PCM layer brick and around 50% for single layer PCM brick
during the day. (This however is not the case during the night when PCMs are rejecting heat but as the temperature
during the night is much lower thus, outside air may be used for the cooling purpose)****

» A PCM thickness from 1 cm to 1.3 cm have been tested experimentally and found suitable in achieving a peak

temperature reduction by around 6 °C****

*R. Saxena, K. Biplab, D. Rakshit, Quantitative Assessment of Phase Change Material Utilization for Building Cooling Load Abatement in Composite Climatic Condition, ASME J. Sol. Energy Eng. 140 (2017) 11001, https://doi.org/10.1115/1.4038047

**R. Saxena, N. Agarwal, D. Rakshit, S.C. Kaushik, Suitability assessment and experimental characterization of PCMs using DSC for thermal management of buildings in composite climate, ASME J. Sol. Energy Eng. 142 (2020) 011014, https://doi.org/10.1115/1.4044568
***R. Saxena, D. Rakshit, S. C. Kaushik, Phase Change Material (PCM) incorporated bricks for energy conservation in composite climate: A sustainable building solution, Elsevier Solar Energy 183 (2019) 276284 https://doi.org/10.1016/j.solener.2019.03.035

****R. Saxena, D. Rakshit, S. C. Kaushik, “Experimental assessment of Phase Change Material (PCM) embedded bricks for passive conditioning in buildings”, Renewable Energy, vol. 149, pp. 587-599, 2020.
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Building envelope retrofit: the thickness-location conundrum

Present scenario:

- Optimization of envelope configuration: | e el
only comparison among a limited Retrofitting layer }yl
number of predefined configurations v [ede o ANS S, g . X,
Retrofitting layer } Y1
- Thickness or position: only one [0 77777 - “remommaagaE T I
parameter can be changed at a time |~ | |~ | [T

Different configurations of a roof section depending upon the location

_ ] and thickness of single retrofitting layer
What more is required:

- All the possible variations of different Mype s 4T ) X; %]
members’ thickness and location should ~ *| | Fevommsiaert Ly, ) || Rewofitigayerz |}
2 Ao« BN 1
be checked | v ez v, | | Rerstingieyerd. -
(Climatic Zones) el iy, Rawtinglvert |1

- Thickness and position: simultaneous _
variation of both parameters Different configurations of a roof section depending upon the location

and thickness of two retrofitting layers

Solution: Genetic Algorithm

Pranaynil Saikia, Marmik Pancholi, Divyanshu Sood, Dibakar Rakshit, Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate, Energy, Vol. 197 (117263), 2020. doi:
https://doi.org/10.1016/j.energy.2020.117263.



Genetic Algorithm for Building Envelope optimization

Objective function:
Minimize interior heat gain = h; (Tipner surface — Tinterior)dt

* Tinner surface (CONCrete inner surface temperature) depends upon outside ambient temperature, incident
solar radiation and the envelope material properties

Constraint: Total thickness of wall or roof (0.25 m for wall, 0.1524 m for roof)

Decision variables: Number of elementary units of different material layers

GA parameters: Elementary unit
« Population size: 50 Ll
« Number of generations: 60 T
« Crossover rate: 0.8 I SN o
« Mutation probability: 0.1 Insulator
« Chromosome length (for each Inner Concrete
parameter): 8

Composite envelope with retrofitting
materials

Pranaynil Saikia, Marmik Pancholi, Divyanshu Sood, Dibakar Rakshit, Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate, Energy, Vol. 197 (117263), 2020. doi:
https://doi.org/10.1016/j.energy.2020.117263.



Experimental Validation

-*-Experimentally measured temp. (4 pm)
~—Numerically computed temp. (4 pm)
-*-Experimentally measured temp. (8 pm)
—Numerically computed temp. (8§ pm)
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—Numerically computed temp. (12 am)
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(a) Complete experimental setup

(a),(b): Validation of numerical model with experimental data
(b) Layers of concrete slabs with thermocouples inserted at the interfaces

Pranaynil Saikia, Marmik Pancholi, Divyanshu Sood, Dibakar Rakshit, Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate, Energy, Vol. 197 (117263), 2020. doi:
https://doi.org/10.1016/j.energy.2020.117263.




Outcomes of GA Powered Optimization

Pranaynil Saikia, Marmik Pancholi, Divyanshu
Sood, Dibakar Rakshit, Dynamic optimization of
multi-retrofit building envelope for enhanced
energy performance with a case study in hq
Indian climate, Energy, Vol. 197 (117263), 2020\
doi:
https://doi.org/10.1016/j.energy.2020.117263.
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Practical Implementation : Pradhan Mantri Awas Yojana (PMAY)

BATH __ —
1.35 n/x1.05r1
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KITCHEN
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PMAY house schematic (Top view)

Pranaynil Saikia, Marmik Pancholi, Divyanshu Sood, Dibakar Rakshit, Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate, Energy, Vol. 197 (117263), 2020. doi:
https://doi.org/10.1016/j.energy.2020.117263.




Key Insights for PMAY employing ECBC and Genetic Algorithm

 Heat gain for an optimized concrete envelope: 54.53 kWh/day
» Heat gain for a non-optimized concrete envelope: 82.00 kWh /day

« Heat gain reduction in a single PMAY house: 27.47 kWh/day (33.5%) or 9.2 kWh/day of electricity saving for an
A/C with COP=3.
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Sample temperature-time profile of envelope components (ZNH-Polystyrene CPCIC)

Pranaynil Saikia, Marmik Pancholi, Divyanshu Sood, Dibakar Rakshit, Dynamic optimization of multi-retrofit building envelope for enhanced energy performance with a case study in hot Indian climate, Energy, Vol. 197 (117263), 2020. doi:
https://doi.org/10.1016/j.energy.2020.117263.




Global history of Pandemics

Pandemic:

Death toll: b : :
50 Million 1 Million 151700 -

, , 575400 ! .
1.1 Million 5.2 Million

Source: Abdelrahman Z, Li M and Wang X (2020) Comparative Review of SARS-CoV-2, SARS-CoV, MERS-CoV, and Influenza A Respiratory Viruses. Front.
Immunol. 11:5529009.
Source: WHO Coronavirus (COVID-19) Dashboard, World Health Organization, accessed: December 2021, url: https://covid19.who.int/




Energy and Space Efficient Room

Current pandemic scenario:

* In present COVID-19 situation, 12 ACH fresh air supply recommended in
buildings.

* To deal with any unforeseen airborne pathogen with unknown infectious
particle size — controlling base airflow is the safest initial preventive action.

 Large population getting infected at the same time — requirement of
additional safe space.

 Space requirements — need to accommodate a large number of infected
patients

* Indoor thermal comfort — high energy requirements

Objectives of the study

1. Maintain safe, healthy and comfortable indoor atmosphere

within existing space constraint

2. Minimize HVAC power consumption through envelope

retrofitting’'s (PCM and Insulation)

28
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Ward schematic, material properties and envelope anatomy

Material
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Test matrix for parametric analysis

Thermal
insulation




Cooling energy supplied and indoor heat gain
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Key Insights

Results emphasize the use of thermal insulation as an effective envelope retrofit for the present requirements.

For the final optimal case, use of lower ACH value (=8 ACH) than the maximum limit considered (=12 ACH)
needs to be stressed upon.

Stale air tends to accumulate near the central roof region for all the retrofitting options considered.

High cooling energy supply (by high supply air ACH and/or low supply air temperature) to the room could
lead to higher amount of indoor heat gain.

With this design, a larger infected community can be catered to simultaneously. (Save life)
Less construction resources will be required for widescale infrastructure expansion. (Save Earth)

Less HVAC energy requirement to maintain safe and comfortable indoor atmosphere. (Save Energy)
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Overall Conclusions
PCM mapping is necessary for their effective utilization.

For buildings in composite climatic conditions, OM35 and Eicosane (99% pure, Alfa Aesar) were found suitable for
utilization, using which, a reduction (up to 10°C) in temperature fluctuations with PCM incorporated bricks can be
obtained, while heat gain reduction by 8% to 12% for experiments carried out in summers, as compared to the conventional

bricks was observed.

PCM Major share of cost is due to PCM. OM35 (INR 600/kg) is preferred during experiments over Eicosane as its cost is
thirty times lower as compared to the Eicosane. Eicosane (99% pure, Alfa Aesar) costs around 2000 INR per 100 g, which

IS too high. OM35 (Pluss Polymer Pvt. Ltd.) turns out to be a much cheaper alternative with cost of 600 INR/Kkg.

Other costs include cost of encapsulation. The PCM encapsulations made up of polyethylene can be a lucrative solution
however, during the test runs it was found that leak which was a major issue in them. Polyethylene cannot sustain the

abrasiveness of the brick surface and are susceptible to leakage.

With the right combination of passive design techniques, significant improvements in thermal comfort conditions are

possible (around 14% to 27%).



Overall Conclusions
Spatial discretization of multi-retrofit building envelope coupled with Genetic Algorithm to optimize the number of
elementary units of each constituent layer of a composite envelope could be an efficient way to realize the suitable size
and location of each thermal retrofit to obtain maximum benefits in terms of indoor heat gain reduction.

With an optimized design of building envelope, up to 33.5% of heat gain reduction and 9.2 kWh/day of electricity
savings can be achieved in a single PMAY unit. The net energy saving by replicating the optimized design in lakhs of
such units envisaged to be constructed can certainly be a big leap towards energy sustainability in the country.

Thermal retrofitting in healthcare wards can lead to significant improvement in indoor heat gain reduction. Adequate
thermal retrofitting can ensure indoor thermal comfort and health safety of occupants while helping to achieve energy
and space efficient healthcare infrastructure to accommodate a large population with airborne infection.

Daylight utilization using light pipe is an effective technique that can be employed for lighting energy reductions and

enhanced indoor environment quality.

A considerable difference can be observed in the equivalent wattages of the artificial lighting devices in both cases,
wherein, more equivalent watts of the artificial lighting devices were obtained in the case of the modified light-pipe since
it produced more illuminance in the room, as compared to the case of the conventional light-pipe.
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