Image credit: Patrick Hendry/Unsplash

Low Carbon Cement – The LC³

ANGAN 2022: Making the Zero-Carbon Transition in Buildings 14 September 2022 New Delhi

Concrete is by far the most used material in the world

Source: INTRODUCTION à LA SCIENCE DES MATÉRIAUX, Kurz, Mercier, Zambelli,. PPUR , 3rd ed 2002

And yet, the enormous volumes used means that concrete production accounts for some **7-9%** of the man-made CO₂ worldwide

a 1% reduction in CO₂ emissions associate with cement and concrete would have the same overall impact as a 100% reduction for steel production

And demand is forecast to rise:

to meet the demand of a growing world population

And demand is forecast to rise:

to meet the demand of a growing world population

• Urbanization and need of houses and infrastructure

- Second largest producer of cement 7% of the global demand
- Around 381 MioT in FY22
- 12% YoY growth
- Strong demand affordable housing, infrastructure and smart cities
- One of the greenest cement production in the world fly ash and slag
- 7% contribution to India's total process CO₂ emission

CO₂ emissions from the manufacture of cement in India from 1960 to 2020 *(in million metric tons)*

fly ash

Development Alternatives People | Planet | Prosperity

Origin of CO₂ emissions in cement production

1 tonne of cement leads to emission of 650 – 900 kg CO₂

Decreasing "chemical" CO_2 will mean changes in the *chemistry* of the cement: therefore its reactions and potential performance

Only material really potentially available in viable quantities is calcined clay.

Blend containing combination of calcined clay and limestone are particularly interesting: Swiss led LC³ project supported by SDC: *Swiss Federal Government Agency for Development and Cooperation*

What is LC³?

LC³: Advantages

- Clinker factor reduced to 50%
- Use of moderate quality clays and low grade limestone resources
- Low temperature calcination of kaolinitic clays (800°C)
- Saving of upto 40% CO_2 emissions compared to Ordinary Portland Cement

What is LC³?

LC³: Advantages

- Saving of upto 60% CO₂ emissions compared to Portland Cement
- Use of renewable fuels to calcine clay at lower temperatures

Raw materials for LC³?

Raw materials for LC³?

Production process of LC³?

Major raw materials: Limestone, *Kaolinitic clay*, Coal, Pet coke, Lignite Other significant inputs: Electricity (from the grid), Alternative fuels, Gypsum, White clay, Water, Plant and equipment

Important sub-processes: Limestone extraction, Raw meal preparation, Clinkerization, *Clay calcination*, Blending, Packing and dispatch, Power generation

Products: Bulk cement, Cement bags, Clinker

LC³ in India

LC³ in the World

LCA study – Reddipalayam, Ariyalur

Process wise energy consumption – CSI system

LCA study – Reddipalayam, Ariyalur

Process wise CO2 emissions – CSI system

The LC³ house at Orchha

Potentials

- Practically feasible and easy to adopt technology for existing and new cement companies
- To be the preferred choices of cement companies across the world if china clay is available within a radius of 200 km

Challenges

Technology imperatives

• Continued research on waste materials and concrete in a Mission Mode

Business imperatives

- Carbon credits for LC³ production
- Green finance for adopting LC³

Market imperatives

- Visibility of LC³ with buyers
- Include LC³ in all national and international rating systems

Policy imperatives

- Fast track publication of LC³ standards
- Notification on use of LC³ in public construction and public procurement
- Incentives on use and production of green cement

Acknowledgement

Swiss Agency for Development and cooperation SDC

Indian Institute of Technology, Delhi Indian Institute of Technology, Madras Central University "Marta Abreu" of Las Villas

For constant guidance and support to all partners and the entire programme across the globe

Commercializing the LC³ technology transfer services across the globe

