LIFE-CYCLE CARBON ASSESSMENT OF BUILDINGS: INDIAN CONTEXT

Sameer Maithel ANGAN, New Delhi, 14 September 2022

OUTLINE

- Life-cycle carbon assessment An Indian example
- Reducing upfront embodied carbon– An Indian example
- A framework for decarbonization of the building sector
- Conclusions

LIFE-CYCLE CARBON ASSESSMENT FRAMEWORK - BUILDINGS

PRODUCTS			CONS	FRUCT	USE						END OF LIFE			BEYOND LIFE CYCLE	
A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B 6	Cl	C2	C3	D3	D4
Raw Material Extraction & Procurement	Transport	Manufacturing	Tansport	On-Site Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy	Deconstruction & Demolition	Transport	Waste Processing	Recycling	Exported Energy

CASE STUDY: CARBSE BUILDING, CEPT UNIVERSITY, AHMEDABAD

- Net-zero energy building
- A research laboratory (515 m² area)
- Construction:
 - RCC, burnt clay bricks, XPS insulation for wall and structural systems, uPVC windows, double-glazed, low-E coated windows, stone flooring.
 - 30 kWp PV array and multiple heating, ventilation and air-conditioning (HVAC) systems
- Extensive monitored data available regarding its energy performance.
- Indian embodied carbon data used for analysis.
- Building operational life of 60 years. PV array life of 20 years were taken for analysis

Source: Milli Jain & Rajan Rawal (2021). Emissions from a net-zero building in India: life cycle assessment, Buildings and Cities DOI: 10.5334/bc.194

LIFETIME CARBON EMISSIONS

Source: Milli Jain & Rajan Rawal (2021). Emissions from a net-zero building in India: life cycle assessment, Buildings and Cities DOI: 10.5334/bc.194

- Net Zero Energy Buildings ≠ Net Zero Carbon Buildings.
- To become net zero carbon significant additional measures e.g. additional solar capacity, trees, etc. are required.

REDUCING UPFRONT EMBODIED CARBON

- G+3 Residential Building
- Total area ~ 5000 sq ft
- Place Kolkata

I PR	PRODUCTS			TRUCT	USE						END OF LIFE			BEYOND LIFE CYCLE		
AI	A2	A3	A4	A5	B1	B2	B3	B4	B5	B 6	Cl	C2	C3	D3	D4	ł
Raw Material Extraction & Procurement	Transport	Manufacturing	Tansport	On-Site Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational Energy	Deconstruction & Demolition	Transport	Waste Processing	Recycling	Exported Energy	

Source: AB Lal, Japan Shah & GKSPL: Study done for Arth Ceramics, Kolkata

3 CASES: CONSTRUCTION SYSTEMS USING BURNT CLAY BRICKS

Case 1: Concrete frame construction with solid brick - wall thickness 250 mm (Conventional)

Case 2: Concrete frame construction with Hollow Clay Blocks - wall thickness 200 mm

Case 3: vertical cored hollow block confined masonry with waffle slab Source: AB Lal, Japan Shah & GKSPL: Study done for Arth Ceramics, Kolkata

REDUCTION IN STEEL, CONCRETE & EMBODIED UPFRONT CARBON

- 50% reduction in upfront carbon
 - 280 kg CO₂/m² (Case I) → 140 kg CO₂/m² (Case 3)
- With simultaneously decarbonization of the steel and cement industries, much deeper cuts are possible.
- Case 2& 3 also offers better thermal insulation and hence lower operational energy/carbon for airconditioning
- 53% reduction in structural cost (Case 3 compared to Case 1)
- A win-win proposition

Source: AB Lal, Japan Shah & GKSPL: Study done for Arth Ceramics, Kolkata

FRAMEWORK FOR DECARBONIZATION OF BUILDING SECTOR

CONCLUSIONS

- Life cycle carbon assessment
 - More focused work required to understand the implications of "net zero carbon" buildings in the Indian context; better data base on embodied energy/carbon
- For decarbonization of buildings, immediate attention is required to reduce upfront embodied carbon emissions.
 - Decarbonization of primary building material supply chains, steel, cement, bricks, etc.
 - Employing available construction technologies which economies on the use of higher embodied carbon materials, ...
- A new approach required for achieving decarbonisation of building sector
 - Building construction is a conservative sector; involves millions of persons and enterprises; a more inclusive approach is required.
 - Slow progress so far. Top-down approach, lack of time-bound & coordinated efforts
 - Regional focus, decentralised and bottoms-up approach during formulation and implementation are required

Contact: Sameer Maithel Email: <u>sameer@gkspl.in</u> Mobile: +91 9811392256

THANK YOU !!!